Abstract
AbstractUsing Poincaré duality, we obtain a formula of Lefschetz type that computes the Lefschetz number of an endomorphism of a separable nuclear C*-algebra satisfying Poincaré duality and the Kunneth theorem. (The Lefschetz number of an endomorphism is the graded trace of the induced map on K-theory tensored with ℂ, as in the classical case.) We then examine endomorphisms of Cuntz–Krieger algebras OA. An endomorphism has an invariant, which is a permutation of an infinite set, and the contracting and expanding behavior of this permutation describes the Lefschetz number of the endomorphism. Using this description, we derive a closed polynomial formula for the Lefschetz number depending on the matrix A and the presentation of the endomorphism.
Publisher
Canadian Mathematical Society
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献