A Boltzmann Approach to Percolation on Random Triangulations

Author:

Bernardi Olivier,Curien Nicolas,Miermont Grégory

Abstract

AbstractWe study the percolation model on Boltzmann triangulations using a generating function approach. More precisely, we consider a Boltzmann model on the set of finite planar triangulations, together with a percolation configuration (either site-percolation or bond-percolation) on this triangulation. By enumerating triangulations with boundaries according to both the boundary length and the number of vertices/edges on the boundary, we are able to identify a phase transition for the geometry of the origin cluster. For instance, we show that the probability that a percolation interface has length$n$decays exponentially with$n$except at a particular value$p_{c}$of the percolation parameter$p$for which the decay is polynomial (of order$n^{-10/3}$). Moreover, the probability that the origin cluster has size$n$decays exponentially if$p<p_{c}$and polynomially if$p\geqslant p_{c}$.The critical percolation value is$p_{c}=1/2$for site percolation, and$p_{c}=(2\sqrt{3}-1)/11$for bond percolation. These values coincide with critical percolation thresholds for infinite triangulations identified by Angel for site-percolation, and by Angel and Curien for bond-percolation, and we give an independent derivation of these percolation thresholds.Lastly, we revisit the criticality conditions for random Boltzmann maps, and argue that at$p_{c}$, the percolation clusters conditioned to have size$n$should converge toward the stable map of parameter$\frac{7}{6}$introduced by Le Gall and Miermont. This enables us to derive heuristically some new critical exponents.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Random walks on decorated Galton–Watson trees;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2024-08-01

2. Lessons from the Mathematics of Two-Dimensional Euclidean Quantum Gravity;Handbook of Quantum Gravity;2023

3. More on Bond Percolation;Lecture Notes in Mathematics;2023

4. Percolation probability and critical exponents for site percolation on the UIPT;Canadian Journal of Mathematics;2022-10-20

5. On scaling limits of random trees and maps with a prescribed degree sequence;Annales Henri Lebesgue;2022-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3