Abstract
AbstractLet G be a finite group and let A(G) denote the Burnside ring of G. Then an inverse limit L(G) of the groups A(H) for proper subgroups H of G and a homomorphism res from A(G) to L(G) are obtained in a natural way. Let Q(G) denote the cokernel of res. For a prime p, let N(p) be the minimal normal subgroup of G such that the order of G/N(p) is a power of p, possibly 1. In this paper we prove that Q(G) is isomorphic to the cartesian product of the groups Q(G/N(p)), where p ranges over the primes dividing the order of G.
Publisher
Canadian Mathematical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献