Abstract
Abstract. Let Θ = (α, β) be a point in R2, with 1, α, β linearly independent over Q. We attach to Θ a quadruple Ω (Θ) of exponents that measure the quality of approximation to Θ both by rational points and by rational lines. The two “uniform” components of Ω (Θ) are related by an equation due to Jarník, and the four exponents satisfy two inequalities that refine Khintchine's transference principle. Conversely, we show that for any quadruple Ω fulfilling these necessary conditions, there exists a point Θ ∈ R2 for which Ω (Θ) = Ω.
Publisher
Canadian Mathematical Society
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献