Holomorphic Functions of Slow Growth on Nested Covering Spaces of Compact Manifolds

Author:

Lárusson Finnur

Abstract

AbstractLet Y be an infinite covering space of a projective manifold M in N of dimension n ≥ 2. Let C be the intersection with M of at most n − 1 generic hypersurfaces of degree d in N. The preimage X of C in Y is a connected submanifold. Let φ be the smoothed distance from a fixed point in Y in a metric pulled up from M. Let φ(X) be the Hilbert space of holomorphic functions f on X such that f2eφ is integrable on X, and define φ(Y) similarly. Our main result is that (under more general hypotheses than described here) the restriction φ(Y) → φ(X) is an isomorphism for d large enough.This yields new examples of Riemann surfaces and domains of holomorphy in n with corona. We consider the important special case when Y is the unit ball in n, and show that for d large enough, every bounded holomorphic function on X extends to a unique function in the intersection of all the nontrivial weighted Bergman spaces on . Finally, assuming that the covering group is arithmetic, we establish three dichotomies concerning the extension of bounded holomorphic and harmonic functions from X to .

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Corona Problem;Lectures on Analytic Function Spaces and their Applications;2023

2. Towards Oka–Cartan theory for algebras of holomorphic functions on coverings of Stein manifolds I;Revista Matemática Iberoamericana;2015

3. Towards Oka–Cartan theory for algebras of holomorphic functions on coverings of Stein manifolds. II;Revista Matemática Iberoamericana;2015

4. Corona Problem for H ∞ on Riemann Surfaces;Fields Institute Communications;2014

5. Extension of matrices with entries in $H^{\infty }$ on coverings of Riemann surfaces of finite type;St. Petersburg Mathematical Journal;2010-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3