Author:
Bavula V. V.,Levandovskyy V.
Abstract
AbstractThe Dixmier Conjecture says that every endomorphism of the (first) Weyl algebra $A_{1}$ (over a field of characteristic zero) is an automorphism, i.e., if $PQ-QP=1$ for some $P,Q\in A_{1}$, then $A_{1}=K\langle P,Q\rangle$. The Weyl algebra $A_{1}$ is a $\mathbb{Z}$-graded algebra. We prove that the Dixmier Conjecture holds if the elements $P$ and $Q$ are sums of no more than two homogeneous elements of $A_{1}$ (there is no restriction on the total degrees of $P$ and $Q$).
Publisher
Canadian Mathematical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献