Author:
Pfeffer Washek F.,Thomson Brian S.
Abstract
AbstractUsing ideas of McShane ([4, Example 3]), a detailed development of the Riemann integral in a locally compact Hausdorff space X was presented in [1]. There the Riemann integral is derived from a finitely additive volume v defined on a suitable semiring of subsets of X. Vis-à-vis the Riesz representation theorem ([8, Theorem 2.141), the integral generates a Riesz measure v in X, whose relationship to the volume v was carefully investigated in [1, Section 7].In the present paper, we use the same setting as in [1] but produce the measure directly without introducing the Riemann integral. Specifically, we define an outer measure by means of gages and introduce a very intuitive concept of gage measurability that is different from the usual Carathéodory définition. We prove that if the outer measure is σ-finite, the resulting measure space is identical to that defined by means of the Carathéodory technique, and consequently to that of [1, Section 7]. If the outer measure is not σ-finite, we investigate the gage measurability of Carathéodory measurable sets that are σ-finite. Somewhat surprisingly, it turns out that this depends on the axioms of set theory.
Publisher
Canadian Mathematical Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. WASHEK PFEFFER’S BOOKS ON RIEMANN-TYPE INTEGRATION;Real Analysis Exchange;2021-11-01
2. Bibliography;The Divergence Theorem and Sets of Finite Perimeter;2012-04-18
3. A Full Descriptive Definition of the Henstock–Kurzweil Integral in the Euclidean Space;Proceedings of the London Mathematical Society;2003-10-23
4. A Definition of Integrals;Journal of Mathematical Analysis and Applications;1995-11