On Rational Equivalence in Tropical Geometry

Author:

Allermann Lars,Hampe Simon,Rau Johannes

Abstract

AbstractThis article discusses the concept of rational equivalence in tropical geometry (and replaces an older, imperfect version). We give the basic definitions in the context of tropical varieties without boundary points and prove some basic properties. We then compute the “bounded” Chow groups of Rn by showing that they are isomorphic to the group of fan cycles. The main step in the proof is of independent interest. We show that every tropical cycle in Rn is a sum of (translated) fan cycles. This also proves that the intersection ring of tropical cycles is generated in codimension 1 (by hypersurfaces).

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Positivity of tropical multidegrees;Selecta Mathematica;2024-05-28

2. Counting tropical rational space curves with cross-ratio constraints;manuscripta mathematica;2021-06-15

3. Generalizing Tropical Kontsevich's Formula to Multiple Cross-Ratios;The Electronic Journal of Combinatorics;2020-11-13

4. Mustafin varieties, moduli spaces and tropical geometry;manuscripta mathematica;2020-08-24

5. Counting tropical rational curves with cross-ratio constraints;Mathematische Zeitschrift;2020-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3