A Variational Characterization of Contact Metric Manifolds With Vanishing Torsion

Author:

Blair D. E.,Perrone D.

Abstract

AbstractChern and Hamilton considered the integral of the Webster scalar curvature as a functional on the set of CR-structures on a compact 3-dimensional contact manifold. Critical points of this functional can be viewed as Riemannian metrics associated to the contact structure for which the characteristic vector field generates a 1-parameter group of isometries i.e. K-contact metrics. Tanno defined a higher dimensional generalization of the Webster scalar curvature, computed the critical point condition of the corresponding integral functional and found that it is not the K-contact condition. In this paper two other generalizations are given and the critical point conditions of the corresponding integral functionals are found. For the second of these, this is the K-contact condition, suggesting that it may be the proper generalization of the Webster scalar curvature.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Riemannian Contact Geometry;Complex Manifolds;2019-01-01

2. References;Harmonic Vector Fields;2012

3. Riemannian Geometry of Contact and Symplectic Manifolds;Progress in Mathematics;2010

4. Spaces of Riemannian metrics;Journal of Mathematical Sciences;2007-05

5. Contact metric manifolds whose characteristic vector field is a harmonic vector field;Differential Geometry and its Applications;2004-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3