Abstract
AbstractLet q be a positive power of an odd prime p, and let Fq(t) be the function field with coefficients in the finite field of q elements. Let denote the ideal class number of the real quadratic function field obtained by adjoining the square root of an even-degree monic . The following theorem is proved: Let n ≧ 1 be an integer not divisible by p. Then there exist infinitely many monic, squarefree polynomials, such that n divides the class number, . The proof constructs an element of order n in the ideal class group.
Publisher
Canadian Mathematical Society
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献