Abstract
AbstractBuilding on our previous work, we study the non-relative homology of quantum group convolution algebras. Our main result establishes the equivalence of amenability of a locally compact quantum group and 1-injectivity of as an operator -module. In particular, a locally compact group G is amenable if and only if its group von Neumann algebra VN(G) is 1-injective as an operator module over the Fourier algebra A(G). As an application, we provide a decomposability result for completely bounded -module maps on , and give a simpliûed proof that amenable discrete quantum groups have co-amenable compact duals, which avoids the use of modular theory and the Powers-Størmer inequality, suggesting that our homological techniques may yield a new approach to the open problem of duality between amenability and co-amenability.
Publisher
Canadian Mathematical Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献