The Classical N-body Problem in the Context of Curved Space

Author:

Diacu Florin

Abstract

AbstractWe provide the differential equations that generalize the Newtonian N-body problem of celestial mechanics to spaces of constant Gaussian curvature κ, for all κ ∊ ℝ. In previous studies, the equations of motion made sense only for κ ≠ 0. The system derived here does more than just include the Euclidean case in the limit κ → 0; it recovers the classical equations for κ = 0. This new expression of the laws of motion allows the study of the N-body problem in the context of constant curvature spaces and thus oòers a natural generalization of the Newtonian equations that includes the classical case. We end the paper with remarks about the bifurcations of the first integrals.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of positive elliptic-elliptic rotopulsators on Clifford tori;Journal of Mathematical Analysis and Applications;2023-10

2. Collision trajectories and regularisation of two-body problem on S2;Journal of Geometry and Physics;2023-09

3. Equilibrium points in restricted problems on S2 and H2;Journal of Mathematical Physics;2022-06-01

4. Results on equality of masses for choreographic solutions of n-body problems;Journal of Mathematical Physics;2020-09-01

5. Attracting and Repelling 2-Body Problems on a Family of Surfaces of Constant Curvature;Journal of Dynamics and Differential Equations;2020-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3