Author:
Echterhoff Siegfried,Quigg John
Abstract
AbstractUsing the close relationship between coactions of discrete groups and Fell bundles, we introduce a procedure for inducing a C*-coaction δ: D → D ⊗C*(G/N) of a quotient group G/N of a discrete group G to a C*-coaction Ind δ: Ind D → D ⊗C*(G) of G. We show that induced coactions behave in many respects similarly to induced actions. In particular, as an analogue of the well known imprimitivity theorem for induced actions we prove that the crossed products Ind D ×IndδG and D ×δG/N are always Morita equivalent. We also obtain nonabelian analogues of a theorem of Olesen and Pedersen which show that there is a duality between induced coactions and twisted actions in the sense of Green. We further investigate amenability of Fell bundles corresponding to induced coactions.
Publisher
Canadian Mathematical Society
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献