Abstract
AbstractIt is a theorem of Bers that any closed hyperbolic surface admits a pants decomposition consisting of curves of bounded length where the bound only depends on the topology of the surface. The question of the quantification of the optimal constants has been well studied, and the best upper bounds to date are linear in genus, due to a theorem of Buser and Seppälä. The goal of this note is to give a short proof of a linear upper bound that slightly improves the best known bound.
Publisher
Canadian Mathematical Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献