Boundary Value Problems for Harmonic Functions on the Heisenberg Group

Author:

Dunkl Charles F.

Abstract

Analysis on the Heisenberg group has become an important area with strong connections to Fourier analysis, group representations, and partial differential operators. We propose to show in this work that special functions methods can also play a significant part in this theory. There is a one-parameter family of second-order hypoelliptic operators Lγ, (γ ∊ C), associated to the Laplacian L0 (also called the subelliptic or Kohn Laplacian). These operators are closely related to the unit ball for reasons of homogeneity and unitary group invariance. The associated Dirichlet problem is to find functions with specified boundary values and annihilated by Lγ inside the ball (that is, Lγ-harmonic). This is the topic of this paper.Gaveau [9] proved the first positive result, showing that continuous functions on the boundary can be extended to L0-harmonic functions in the ball, by use of diffusion-theoretic methods. Jerison [15] later gave another proof of the L0-result. Hueber [14] has recently obtained some results dealing with special values of the Poisson kernel for L0.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3