Abstract
Kaplansky proposed in [7] three problems with which to test the adequacy of a proposed structure theory of infinite abelian groups. These problems can be rephrased as test problems for a structure theory of operators on Hilbert space. Thus, R. Kadison and I. Singer answered in [6] these test problems for the unitary equivalence of operators. We propose here a study of these problems for quasisimilarity of operators on Hilbert space. We recall first that two (bounded, linear) operators T and T′ acting on the Hilbert spaces and , are said to be quasisimilar if there exist bounded operators and with densely defined inverses, satisfying the relations T′X = XT and TY = YT′. The fact that T and T′ are quasisimilar is indicated by T ∼ T′. The problems mentioned above can now be formulated as follows.
Publisher
Canadian Mathematical Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Intersection theory and the Horn inequalities for invariant subspaces;Acta Scientiarum Mathematicarum;2016
2. TEST PROBLEMS FOR OPERATOR-ALGEBRAS;T AM MATH SOC;1995
3. Test problems for operator algebras;Transactions of the American Mathematical Society;1995
4. Triangular Operators;Bulletin of the London Mathematical Society;1991-11
5. The Jordan form of a bitriangular operator;Journal of Functional Analysis;1990-11