Author:
Chen Huaihui,Gauthier Paul M.
Abstract
AbstractLoosely speaking, a function (meromorphic or harmonic) from the hyperbolic disk of the complex plane to the Riemann sphere is normal if its dilatation is bounded. We call a function strongly normal if its dilatation vanishes at the boundary. A sequential property of this class of functions is proved. Certain integral conditions, known to be sufficient for normality, are shown to be in fact sufficient for strong normality.
Publisher
Canadian Mathematical Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献