Abstract
It follows from [1, p. 377, Lemma 1] that a noncommutative subdirectly irreducible ring, with no nonzero nilpotent elements, cannot possess any proper zero-divisors. From [2, p. 193, Corollary 1] a subdirectly irreducible distributive lattice, with more than one element, is isomorphic to the chain with two elements. Hence we can say that a subdirectly irreducible distributive lattice with 0 possesses no proper zero-divisors.
Publisher
Canadian Mathematical Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献