Abstract
We consider polynomials of the formwith non-zero coefficients ai in a finite field F. For any finite extension field K ⊇ F, let fk:Kn → K be the mapping defined by f. We say f is universal over K if fK is surjective, and f is isotropic over K if fK has a non-trivial “kernel“; the latter means fK(X) = 0 for some 0 ≠ x ∊ Kn.We show (Theorem 1) that f is universal over K provided |K| (the cardinality of K) is larger than a certain explicit bound given in terms of the exponents d1,…, dn. The analogous fact for isotropy is Theorem 2.It should be noted that in studying diagonal equationswe fix both the number of variables n and the exponents di, and ask how large the field must be to guarantee a solution.
Publisher
Canadian Mathematical Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献