Abstract
The measure (x1x2x3)2adm(x) on the unit sphere in R3 is invariant under sign-changes and permutations of the coordinates; here dm denotes the rotation-invariant surface measure. The more general measurecorresponds to the measureon the triangle(where ). Appell ([1] Chap. VI) constructed a basis of polynomials of degree n in v1, v2 orthogonal to all polynomials of lower degree, and a biorthogonal set for the case γ = 0. Later Fackerell and Littler [6] found a biorthogonal set for Appell's polynomials for γ ≠ 0. Meanwhile Pronol [10] had constructed an orthogonal basis in terms of Jacobi polynomials.
Publisher
Canadian Mathematical Society
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献