Author:
Konvalinka Matjaž,Skandera Mark
Abstract
Abstract Certain polynomials in n2 variables that serve as generating functions for symmetric group characters are sometimes called (Sn) character immanants. We point out a close connection between the identities of Littlewood–Merris–Watkins and Goulden–Jackson, which relate Sn character immanants to the determinant, the permanent and MacMahon's Master Theorem. From these results we obtain a generalization of Muir's identity. Working with the quantum polynomial ring and the Hecke algebra Hn(q), we define quantum immanants that are generating functions for Hecke algebra characters. We then prove quantum analogs of the Littlewood–Merris–Watkins identities and selected Goulden–Jackson identities that relate Hn(q) character immanants to the quantum determinant, quantum permanent, and quantum Master Theorem of Garoufalidis–Lê–Zeilberger. We also obtain a generalization of Zhang's quantization of Muir's identity.
Publisher
Canadian Mathematical Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献