Abstract
AbstractThe paper characterizes the set of all possible values for the number of lines determined by n points for n sufficiently large. For the lower bound of Kelly and Moser for the number of lines in a configuration with n — k collinear points is shown to be sharp and it is shown that all values between Mmin(k) and Mmax(k) are assumed with the exception of Mmax — 1 and Mmax — 3. Exact expressions are obtained for the lower end of the continuum of values leading down from In particular, the best value of c = 1 is obtained in Erdös’ previous expression for this lower end of the continuum.
Publisher
Canadian Mathematical Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献