Abstract
In this paper we investigate indefinite Finsler spaces in which the metric tensor has signature n — 2. These spaces are a generalization of Lorentz manifolds. Locally a partial ordering may be defined such that the reverse triangle inequality holds for this partial ordering. Consequently, the spaces we study may be made into what Busemann [3] terms locally timelike spaces. Furthermore, sufficient conditions are obtained for an indefinite Finsler space to be a doubly timelike surface (see [2; 4]). In particular, all two-dimensional pseudo-Riemannian spaces are shown to be doubly timelike surfaces.
Publisher
Canadian Mathematical Society
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献