On the Nilpotency of Nil Subrings

Author:

Fisher Joe W.

Abstract

A famous theorem of Levitzki states that in a left Noetherian ring each nil left ideal is nilpotent. Lanski [5] has extended Levitzki's theorem by proving that in a left Goldie ring each nil subring is nilpotent. Another important theorem in this area which is due to Herstein and Small [3] states that if a ring satisfies the ascending chain condition on both left and right annihilators, then each nil subring is nilpotent. We give a short proof of a theorem (Theorem 1.6) which yields both Lanski's theorem and Herstein- Small's theorem. We make use of the ascending chain condition on principal left annihilators in order to obtain, at an intermediate step, a theorem (Theorem 1.1) which produces sufficient conditions for a nil subring to be left T-nilpotent.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Right primary and nilary rings and ideals;Journal of Algebra;2013-03

2. Preliminaries and Basic Results;Extensions of Rings and Modules;2013

3. Ideal intrinsic extensions with connections to PI-rings;Journal of Pure and Applied Algebra;2009-09

4. A taxonomy of 2-primal rings;Journal of Algebra;2003-08

5. Nil semigroups of endomorphism rings of modules with chain conditions;Communications in Algebra;2000-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3