Author:
Goldrich Fredric E.,Wigner Eugene P.
Abstract
One of the results of the theory of the irreducible representations of the unitary group in n dimensions Un is that these representations, if restricted to the subgroup Un-1 leaving a vector (let us say the unit vector e1 along the first coordinate axis) invariant, do not contain any irreducible representation of this Un-1 more than once (see [1, Chapter X and Equation (10.21)]; the irreducible representations of the unitary group were first determined by I. Schur in his doctoral dissertation (Berlin, 1901)). Some time ago, a criterion for this situation was derived for finite groups [3] and the purpose of the present article is to prove the aforementioned result for compact Lie groups, and to apply it to the theory of the representations of Un.
Publisher
Canadian Mathematical Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献