Author:
Li Chi-Kwong,Rodman Leiba,Šemrl Peter
Abstract
AbstractLet H be a complex Hilbert space, and be the real linear space of bounded selfadjoint operators on H. We study linear maps ϕ: → leaving invariant various properties such as invertibility, positive definiteness, numerical range, etc. The maps ϕ are not assumed a priori continuous. It is shown that under an appropriate surjective or injective assumption ϕ has the form , for a suitable invertible or unitary T and ξ ∈ {1, −1}, where Xt stands for the transpose of X relative to some orthonormal basis. Examples are given to show that the surjective or injective assumption cannot be relaxed. The results are extended to complex linear maps on the algebra of bounded linear operators on H. Similar results are proved for the (real) linear space of (selfadjoint) operators of the form αI + K, where α is a scalar and K is compact.
Publisher
Canadian Mathematical Society
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献