Abstract
AbstractA classification of simple weight modules over the Schrödinger algebra is given. The Krull and the global dimensions are found for the centralizer (H) (and some of its prime factor algebras) of the Cartan element H in the universal enveloping algebra of the Schrödinger (Lie) algebra. The simple (H)-modules are classified. The Krull and the global dimensions are found for some (prime) factor algebras of the algebra (over the centre). It is proved that some (prime) factor algebras of and (H) are tensor homological/Krull minimal.
Publisher
Canadian Mathematical Society
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献