Author:
Borwein David,Gao Xiaopeng
Abstract
AbstractWorkable necessary and sufficient conditions for a non-negative matrix to be a bounded operator from lp to lq when 1 < q ≤ p < ∞ are discussed. Alternative proofs are given for some known results, thereby filling a gap in the proof of the case p = q of a result of Koskela's. The case 1 < q < p < ∞ of Koskela's result is refined, and a weakened form of the Vere-Jones conjecture concerning matrix operators on lp is shown to be false.
Publisher
Canadian Mathematical Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献