Abstract
The characters of the representations of a finite group G over a field K of characteristic zero generate a ring oK(G) of functions on G, the K-character ring of G, which is readily seen to be Zϕ1 + . . . + Zϕn, where Z is the ring of rational integers and ϕ1, . . . , ϕn are the characters of the different irreducible representations of G over K. The theorem that every irreducible representation of G over an algebraically closed field Ω of characteristic zero is equivalent to a representation of G over the subfield of Ω which is generated by the g0th roots of unity (g0 the exponent of G) was proved by Brauer (4) via the theorems that(1) OΩ(G) is additively generated by the induced characters of representations of elementary subgroups of G, and(2) the irreducible representations over 12 of any elementary group are induced by one-dimensional subgroup representations (3).
Publisher
Canadian Mathematical Society
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Induction theorems for finite groups including a common generalization of two classical theorems;Journal of Algebra;2019-06
2. Bibliography;Group Representations Volume 1 Part B: Introduction to Group Representations and Characters;1992
3. References;Representations of Finite Groups;1987
4. Zero-divisors of character rings of finite groups;Journal of the Mathematical Society of Japan;1978-10-01
5. References;Character Theory of Finite Groups;1976