Abstract
In a recent paper, Olver (2) obtains a set of formulae that completely determine the asymptotic behaviour of the Hermite polynomials, Hn(z), as n —> ∞ and z is unrestricted. His proof depends on a technique that he has developed for discussing the asymptotics of solutions of second-order, linear, homogeneous differential equations satisfying certain conditions. We believe it fair to say that Olver's work follows the tradition of most of the major theorems of classical asymptotics. The results contained in theorems such as Watson's lemma and Perron's proof of the Method of Laplace are based on an acceptance, on an a priori basis, of the Poincaré type expansion.
Publisher
Canadian Mathematical Society
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献