Author:
Bu Shangquan,Merdy Christian Le
Abstract
AbstractWe consider maximal regularity in the Hp sense for the Cauchy problem u′(t) + Au(t) = f(t) (t ∈ ℝ), where A is a closed operator on a Banach space X and f is an X-valued function defined on ℝ. We prove that if X is an AUMD Banach space, then A satisfies Hp-maximal regularity if and only if A is Rademacher sectorial of type < . Moreover we find an operator A with Hp-maximal regularity that does not have the classical Lp-maximal regularity. We prove a related Mikhlin type theorem for operator valued Fourier multipliers on Hardy spaces Hp(ℝ X), in the case when X is an AUMD Banach space.
Publisher
Canadian Mathematical Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献