Author:
Brown Tom C.,Landman Bruce M.,Mishna Marni
Abstract
AbstractFor positive integers s and t, let f(s, t) denote the smallest positive integer N such that every 2-colouring of [1, N] = {1, 2,...,N} has a monochromatic homothetic copy of {1, 1 + s, 1 + s + t}.We show that f (s, t) = 4(s + t) + 1 whenever s/g and t/g are not congruent to 0 (modulo 4), where g = gcd(s, t). This can be viewed as a generalization of part of van der Waerden’s theorem on arithmetic progressions, since the 3-term arithmetic progressions are the homothetic copies of {1, 1 + 1, 1 + 1 + t}. We also show that f (s, t) = 4(s + t) + 1 in many other cases (for example, whenever s > 2t > 2 and t does not divide s), and that f (s, t) ≤ 4 (s + t) + 1 for all s, t.Thus the set of homothetic copies of {1, 1 + s, 1 + s + t} is a set of triples with a particularly simple Ramsey function (at least for the case of two colours), and one wonders what other “natural” sets of triples, quadruples, etc., have simple (or easily estimated) Ramsey functions.
Publisher
Canadian Mathematical Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献