Author:
Brüstle Thomas,Douville Guillaume,Mousavand Kaveh,Thomas Hugh,Yıldırım Emine
Abstract
AbstractFor $A$ a gentle algebra, and $X$ and $Y$ string modules, we construct a combinatorial basis for $\operatorname{Hom}(X,\unicode[STIX]{x1D70F}Y)$. We use this to describe support $\unicode[STIX]{x1D70F}$-tilting modules for $A$. We give a combinatorial realization of maps in both directions realizing the bijection between support $\unicode[STIX]{x1D70F}$-tilting modules and functorially finite torsion classes. We give an explicit basis of $\operatorname{Ext}^{1}(Y,X)$ as short exact sequences. We analyze several constructions given in a more restricted, combinatorial setting by McConville, showing that many but not all of them can be extended to general gentle algebras.
Publisher
Canadian Mathematical Society
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献