Author:
Michael Dolan J.,Klaasen Gene A.
Abstract
Consider the nth order linear equationand particularly the third order equationA nontrivial solution of (1)n is said to be oscillatory or nonoscillatory depending on whether it has infinitely many or finitely many zeros on [a, ∞). Let denote respectively the set of all solutions, oscillatory solutions, nonoscillatory solutions of (1)n. is an n-dimensional linear space. A subspace is said to be nonoscillatory or strongly oscillatory respectively if every nontrivial solution of is nonoscillatory or oscillatory. If contains both oscillatory and nonoscillatory solutions then is said to be weakly oscillatory.
Publisher
Canadian Mathematical Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献