Abstract
AbstractLetkbe a global field,a separable closure ofk, andGkthe absolute Galois groupofoverk. For everyσ ∈ Gk, letbe the fixed subfield ofunderσ. LetE/kbe an elliptic curve overk. It is known that the Mordell–Weil grouphas infinite rank. We present a new proof of this fact in the following two cases. First, when k is a global function field of odd characteristic andEis parametrized by a Drinfeld modular curve, and secondly whenkis a totally real number field andE/kis parametrized by a Shimura curve. In both cases our approach uses the non-triviality of a sequence of Heegner points onEdefined over ring class fields.
Publisher
Canadian Mathematical Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献