Abstract
A space X is called countdbly metacompact (countably paracompact) if every countable open cover has a point finite (locally finite) open refinement. According to Hodel [5], a space X is called countably subparacompact if every countable open cover has a σ-discrete closed refinement. It is well-known (see Mansfield [10] and Dowker [4]) that in normal spaces all of the preceding notions are equivalent. Also, according to Hodel [5], a countably subparacompact space is countably metacompact and the reverse implication is false.
Publisher
Canadian Mathematical Society
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献