Abstract
The real line will be R, Euclidean n-space will be Rn, the unit ball in Rn will be En, the unit sphere in Rn+1 will be Sn, and real projective n-space will be Pn. The canonical line bundle associated with the double cover Sn → Pn will be ηn. If γ is a vector bundle, E(γ) will be its associated cell bundle, S(γ) its associated sphere bundle, P(γ) its associated projective space bundle (P(γ) = S(γ) / (-1)) and T(γ) = E(γ)/S(γ) its Thorn space.
Publisher
Canadian Mathematical Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献