The epsilon constant conjecture for higher dimensional unramified twists of (1)
-
Published:2021-06-29
Issue:
Volume:
Page:1-45
-
ISSN:0008-414X
-
Container-title:Canadian Journal of Mathematics
-
language:en
-
Short-container-title:Can. J. Math.-J. Can. Math.
Author:
Bley Werner,Cobbe Alessandro
Abstract
Abstract
Let
$N/K$
be a finite Galois extension of p-adic number fields, and let
$\rho ^{\mathrm {nr}} \colon G_K \longrightarrow \mathrm {Gl}_r({{\mathbb Z}_{p}})$
be an r-dimensional unramified representation of the absolute Galois group
$G_K$
, which is the restriction of an unramified representation
$\rho ^{\mathrm {nr}}_{{{\mathbb Q}}_{p}} \colon G_{{\mathbb Q}_{p}} \longrightarrow \mathrm {Gl}_r({{\mathbb Z}_{p}})$
. In this paper, we consider the
$\mathrm {Gal}(N/K)$
-equivariant local
$\varepsilon $
-conjecture for the p-adic representation
$T = \mathbb Z_p^r(1)(\rho ^{\mathrm {nr}})$
. For example, if A is an abelian variety of dimension r defined over
${{\mathbb Q}_{p}}$
with good ordinary reduction, then the Tate module
$T = T_p\hat A$
associated to the formal group
$\hat A$
of A is a p-adic representation of this form. We prove the conjecture for all tame extensions
$N/K$
and a certain family of weakly and wildly ramified extensions
$N/K$
. This generalizes previous work of Izychev and Venjakob in the tame case and of the authors in the weakly and wildly ramified case.
Publisher
Canadian Mathematical Society
Subject
General Mathematics