Author:
Nicolau Artur,Thomas Pascal J.
Abstract
Abstract
Let
$\mathcal {N}$
be the Nevanlinna class, and let B be a Blaschke product. It is shown that the natural invertibility criterion in the quotient algebra
$\mathcal {N} / B \mathcal {N}$
, that is,
$|f| \ge e^{-H} $
on the set
$B^{-1}\{0\}$
for some positive harmonic function H, holds if and only if the function
$- \log |B|$
has a harmonic majorant on the set
$\{z\in \mathbb {D}:\rho (z,\Lambda )\geq e^{-H(z)}\}$
, at least for large enough functions H. We also study the corresponding class of positive harmonic functions H on the unit disc such that the latter condition holds. We also discuss the analogous invertibility problem in quotients of the Smirnov class.
Publisher
Canadian Mathematical Society