Abstract
Abstract
For a bounded analytic function
$\varphi $
on the unit disk
$\mathbb {D}$
with
$\|\varphi \|_\infty \le 1$
, we consider the defect operators
$D_\varphi $
and
$D_{\overline \varphi }$
of the Toeplitz operators
$T_{\overline \varphi }$
and
$T_\varphi $
, respectively, on the weighted Bergman space
$A^2_\alpha $
. The ranges of
$D_\varphi $
and
$D_{\overline \varphi }$
, written as
$H(\varphi )$
and
$H(\overline \varphi )$
and equipped with appropriate inner products, are called sub-Bergman spaces.
We prove the following three results in the paper: for
$-1<\alpha \le 0$
, the space
$H(\varphi )$
has a complete Nevanlinna–Pick kernel if and only if
$\varphi $
is a Möbius map; for
$\alpha>-1$
, we have
$H(\varphi )=H(\overline \varphi )=A^2_{\alpha -1}$
if and only if the defect operators
$D_\varphi $
and
$D_{\overline \varphi }$
are compact; and for
$\alpha>-1$
, we have
$D^2_\varphi (A^2_\alpha )= D^2_{\overline \varphi }(A^2_\alpha )=A^2_{\alpha -2}$
if and only if
$\varphi $
is a finite Blaschke product. In some sense, our restrictions on
$\alpha $
here are best possible.
Publisher
Canadian Mathematical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Mixed de Branges–Rovnyak and sub-Bergman spaces;Linear Algebra and its Applications;2024-09