Density theorems for anisotropic point configurations

Author:

Kovač Vjekoslav

Abstract

Abstract Several results in the existing literature establish Euclidean density theorems of the following strong type. These results claim that every set of positive upper Banach density in the Euclidean space of an appropriate dimension contains isometric copies of all sufficiently large elements of a prescribed family of finite point configurations. So far, all results of this type discussed linear isotropic dilates of a fixed point configuration. In this paper, we initiate the study of analogous density theorems for families of point configurations generated by anisotropic dilations, i.e., families with power-type dependence on a single parameter interpreted as their size. More specifically, we prove nonisotropic power-type generalizations of a result by Bourgain on vertices of a simplex, a result by Lyall and Magyar on vertices of a rectangular box, and a result on distance trees, which is a particular case of the treatise of distance graphs by Lyall and Magyar. Another source of motivation for this paper is providing additional evidence for the versatility of the approach stemming from the work of Cook, Magyar, and Pramanik and its modification used recently by Durcik and the present author. Finally, yet another purpose of this paper is to single out anisotropic multilinear singular integral operators associated with the above combinatorial problems, as they are interesting on their own.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-Point Polynomial Patterns in Subsets of Positive Density in ℝn;International Mathematics Research Notices;2024-05-21

2. A Strong-Type Furstenberg–Sárközy Theorem for Sets of Positive Measure;The Journal of Geometric Analysis;2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3