Author:
Schlitzer Enrico,Stoppa Jacopo
Abstract
Abstract
We study deformed Hermitian Yang–Mills (dHYM) connections on ruled surfaces explicitly, using the momentum construction. As a main application, we provide many new examples of dHYM connections coupled to a variable background Kähler metric. These are solutions of the moment map partial differential equations given by the Hamiltonian action of the extended gauge group, coupling the dHYM equation to the scalar curvature of the background. The large radius limit of these coupled equations is the Kähler–Yang–Mills system of Álvarez-Cónsul, Garcia-Fernandez, and García-Prada, and in this limit, our solutions converge smoothly to those constructed by Keller and Tønnesen-Friedman. We also discuss other aspects of our examples including conical singularities, realization as B-branes, the small radius limit, and canonical representatives of complexified Kähler classes.
Publisher
Canadian Mathematical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献