Computing harmonic maps between Riemannian manifolds

Author:

Gaster Jonah,Loustau Brice,Monsaingeon Léonard

Abstract

AbstractIn our previous paper (Gaster et al., 2018, arXiv:1810.11932), we showed that the theory of harmonic maps between Riemannian manifolds, especially hyperbolic surfaces, may be discretized by introducing a triangulation of the domain manifold with independent vertex and edge weights. In the present paper, we study convergence of the discrete theory back to the smooth theory when taking finer and finer triangulations, in the general Riemannian setting. We present suitable conditions on the weighted triangulations that ensure convergence of discrete harmonic maps to smooth harmonic maps, introducing the notion of (almost) asymptotically Laplacian weights, and we offer a systematic method to construct such weighted triangulations in the two-dimensional case. Our computer software Harmony successfully implements these methods to compute equivariant harmonic maps in the hyperbolic plane.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Reference15 articles.

1. [3] Brunck, F. , Iterated medial triangle subdivision in surfaces of constant curvature. Preprint, 2021. arXiv:2107.04112

2. [8] Gaster, J. , Loustau, B. , and Monsaingeon, L. , Computing discrete equivariant harmonic maps. Preprint, 2018. arXiv:1810.11932

3. [5] de Saint-Gervais, H.-P. , Approximation d’objets lisses par des objets PL. 2014–2019. http://analysis-situs.math.cnrs.fr/Approximation-d-objets-lisses-par-des-objets-PL.html

4. On Homotopic Harmonic Maps

5. Global existence theorems for harmonic maps to non-locally compact spaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3