Author:
Joseph Jason,Pongtanapaisan Puttipong
Abstract
Abstract
The meridional rank conjecture asks whether the bridge number of a knot in
$S^3$
is equal to the minimal number of meridians needed to generate the fundamental group of its complement. In this paper, we investigate the analogous conjecture for knotted spheres in
$S^4$
. Towards this end, we give a construction to produce classical knots with quotients sending meridians to elements of any finite order in Coxeter groups and alternating groups, which detect their meridional ranks. We establish the equality of bridge number and meridional rank for these knots and knotted spheres obtained from them by twist-spinning. On the other hand, we show that the meridional rank of knotted spheres is not additive under connected sum, so that either bridge number also collapses, or meridional rank is not equal to bridge number for knotted spheres.
Publisher
Canadian Mathematical Society
Reference22 articles.
1. [15] Maeda, T. , On a composition of knot groups ii: Algebraic bridge index . In Mathematics seminar notes. Vol. 5. 1977, pp. 457–464.
2. Weak unknotting number of a composite
$2$
-knot;Kanenobu;J. Knot Theory Ramifications,1996
3. Knot group epimorphisms;Silver;J. Knot Theory Ramifications,2006
4. Deforming twist-spun knots;Litherland;Trans. Amer. Math. Soc.,1979