Abstract
Abstract
Let
$m,n\ge 2$
be integers. Denote by
$M_n$
the set of
$n\times n$
complex matrices and
$\|\cdot \|_{(p,k)}$
the
$(p,k)$
norm on
$M_{mn}$
with a positive integer
$k\leq mn$
and a real number
$p>2$
. We show that a linear map
$\phi :M_{mn}\rightarrow M_{mn}$
satisfies
$$ \begin{align*}\|\phi(A\otimes B)\|_{(p,k)}=\|A\otimes B\|_{(p,k)} \mathrm{\quad for~ all\quad}A\in M_m\ \mathrm{and}\ B\in M_n\end{align*} $$
if and only if there exist unitary matrices
$U,V\in M_{mn}$
such that
$$ \begin{align*}\phi(A\otimes B)=U(\varphi_1(A)\otimes \varphi_2(B))V \mathrm{\quad for~ all\quad}A\in M_m\ \mathrm{and}\ B\in M_n,\end{align*} $$
where
$\varphi _s$
is the identity map or the transposition map
$X\mapsto X^T$
for
$s=1,2$
. The result is also extended to multipartite systems.
Publisher
Canadian Mathematical Society