Approximation in the Zygmund and Hölder classes on

Author:

Saksman EeroORCID,Soler i Gibert OdíORCID

Abstract

Abstract We determine the distance (up to a multiplicative constant) in the Zygmund class $\Lambda _{\ast }(\mathbb {R}^n)$ to the subspace $\mathrm {J}_{}(\mathbf {bmo})(\mathbb {R}^n).$ The latter space is the image under the Bessel potential $J := (1-\Delta )^{{-1}/2}$ of the space $\mathbf {bmo}(\mathbb {R}^n)$ , which is a nonhomogeneous version of the classical $\mathrm {BMO}$ . Locally, $\mathrm {J}_{}(\mathbf {bmo})(\mathbb {R}^n)$ consists of functions that together with their first derivatives are in $\mathbf {bmo}(\mathbb {R}^n)$ . More generally, we consider the same question when the Zygmund class is replaced by the Hölder space $\Lambda _{s}(\mathbb {R}^n),$ with $0 < s \leq 1$ , and the corresponding subspace is $\mathrm {J}_{s}(\mathbf {bmo})(\mathbb {R}^n)$ , the image under $(1-\Delta )^{{-s}/2}$ of $\mathbf {bmo}(\mathbb {R}^n).$ One should note here that $\Lambda _{1}(\mathbb {R}^n) = \Lambda _{\ast }(\mathbb {R}^n).$ Such results were known earlier only for $n = s = 1$ with a proof that does not extend to the general case. Our results are expressed in terms of second differences. As a by-product of our wavelet-based proof, we also obtain the distance from $f \in \Lambda _{s}(\mathbb {R}^n)$ to $\mathrm {J}_{s}(\mathbf {bmo})(\mathbb {R}^n)$ in terms of the wavelet coefficients of $f.$ We additionally establish a third way to express this distance in terms of the size of the hyperbolic gradient of the harmonic extension of f on the upper half-space $\mathbb {R}^{n +1}_+$ .

Publisher

Canadian Mathematical Society

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3