Abstract
AbstractLet X be a normal projective variety of dimension n and G an abelian group of automorphisms such that all elements of
$G\setminus \{\operatorname {id}\}$
are of positive entropy. Dinh and Sibony showed that G is actually free abelian of rank
$\le n - 1$
. The maximal rank case has been well understood by De-Qi Zhang. We aim to characterize the pair
$(X, G)$
such that
$\operatorname {rank} G = n - 2$
.
Publisher
Canadian Mathematical Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献