Author:
Balodi Mamta,Banerjee Abhishek,Ray Samarpita
Abstract
AbstractLet $H$ be a Hopf algebra. We consider $H$-equivariant modules over a Hopf module category ${\mathcal{C}}$ as modules over the smash extension ${\mathcal{C}}\#H$. We construct Grothendieck spectral sequences for the cohomologies as well as the $H$-locally finite cohomologies of these objects. We also introduce relative $({\mathcal{D}},H)$-Hopf modules over a Hopf comodule category ${\mathcal{D}}$. These generalize relative $(A,H)$-Hopf modules over an $H$-comodule algebra $A$. We construct Grothendieck spectral sequences for their cohomologies by using their rational $\text{Hom}$ objects and higher derived functors of coinvariants.
Publisher
Canadian Mathematical Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献