Author:
Isaacs I. M.,Passman D. S.
Abstract
Let G be a finite group and A a group of automorphisms of G. Clearly A acts as a permutation group on G#, the set of non-identity elements of G. We assume that this permutation representation is half transitive, that is all the orbits have the same size. A special case of this occurs when A acts fixed point free on G. In this paper we study the remaining or non-fixed point free cases. We show first that G must be an elementary abelian g-group for some prime q and that A acts irreducibly on G. Then we classify all such occurrences in which A is a p-group.
Publisher
Canadian Mathematical Society
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献