Abstract
AbstractLet g : M2n → M2n be a smooth map of period m ≥ 2 which preserves orientation. Suppose that the cyclic action defined by g is regular and that the normal bundle of the fixed point set F has a g-equivariant complex structure. Let F ⋔ F be the transverse self-intersection of F with itself. If the g-signature Sign(g, M) is a rational integer and n < ϕ(m), then there exists a choice of orientations such that Sign(g, M) = Sign F = Sign(F ⋔ F).
Publisher
Canadian Mathematical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cyclic actions and divisible polynomials;Journal of Pure and Applied Algebra;2007-03